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Abstract

Background: The high degree of heterogeneity brought great challenges to the diagnosis and treatment of acute
myeloid leukemia (AML). Although several different AML prognostic scoring models have been proposed to assess
the prognosis of patients, the accuracy still needs to be improved. As important components of the tumor
microenvironment, immune cells played important roles in the physiological functions of tumors and had certain
research value. Therefore, whether the tumor immune microenvironment (TIME) can be used to assess the
prognosis of AML aroused our great interest.

Methods: The patients’ gene expression profile from 7 GEO databases was normalized after removing the batch
effect. TIME cell components were explored through Xcell tools and then hierarchically clustered to establish TIME
classification. Subsequently, a prognostic model was established by Lasso-Cox. Multiple GEO databases and the
Cancer Genome Atlas dataset were employed to validate the prognostic performance of the model. Receiver
operating characteristic (ROC) and the concordance index (C-index) were utilized to assess the prognostic efficacy.
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Results: After analyzing the composition of TIME cells in AML, we found infiltration of ten types of cells with
prognostic significance. Then using hierarchical clustering methods, we established a TIME classification system,
which clustered all patients into three groups with distinct prognostic characteristics. Using the differential genes
between the first and third groups in the TIME classification, we constructed a 121-gene prognostic model. The
model successfully divided 1229 patients into the low and high groups which had obvious differences in prognosis.
The high group with shorter overall survival had more patients older than 60 years and more poor-risk patients
(both P< 0.001). Besides, the model can perform well in multiple datasets and could further stratify the
cytogenetically normal AML patients and intermediate-risk AML population. Compared with the European Leukemia
Net Risk Stratification System and other AML prognostic models, our model had the highest C-index and the
largest AUC of the ROC curve, which demonstrated that our model had the best prognostic efficacy.

Conclusion: A prognostic model for AML based on the TIME classification was constructed in our study, which may
provide a new strategy for precision treatment in AML.

Keywords: Acute myeloid leukemia, Tumor immune microenvironment classification, Prognostic model, Precision
treatment

Background
Acute myeloid leukemia (AML) is a highly heteroge-
neous hematological malignancy characterized by clonal
malignant proliferation of bone marrow progenitor cells
[1]. Despite the continuous discovery of new therapeutic
targets and drugs, the recurrence and mortality rates of
AML are still high [2]. Accurate assessment of prognosis
at the time of diagnosis is conducive to the treatment of
the patients [3]. The European Leukemia Net (ELN)
stratification system is the most widely used tool for
stratifying the risk of AML patients, but the accuracy of
this method needs to be improved [4]. There have
been several prognostic models established with different
foundations, such as microRNA, leukemia hematopoietic
stem cells (LSC), and gene expression profiles [5–9].
However, these models still have some limitations, for
example, the relatively small number of samples, compli-
cated composition, and the inefficient validation in sub-
types of AML. There is an urgent need to explore more
optimized models.
The tumor microenvironment (TME) can play an im-

munosuppressive role in assisting the immune escape of
tumor cells, which has attracted the attention of re-
searchers [10]. Immune cells in TME mainly consist of
natural killer (NKT) cells, macrophages, neutrophils,
dendritic cells, suppressor cells derived from bone mar-
row, innate lymphoid cells, and T/B lymphocytes [11].
Great progress has been made in research on drugs that
blocks the function of CTLA4 and PD-L1/PD1 in melan-
oma to release anti-tumor immunity [12, 13]. Unfortu-
nately, through the immunosuppressive effect of TME
that can promote tumor cell escape, those drugs showed
limited efficacy for AML patients [14–16]. At present,
the remodeling of the microenvironment and the restor-
ation of an effective immune response still cannot be

achieved, and relevant research is still very limited [17].
Furthermore, to the best of our knowledge, there is still
a lack of an accurate prognostic model based on the im-
mune microenvironment for AML. In this study, we
used a large database to infer the tumor immune micro-
environment of AML, established a tumor immune
microenvironment (TIME) classification based on cell
infiltration, and further constructed a prognostic model
for AML patients, which may contribute to the diagnosis
and treatment of AML.

Methods
Patients
We aimed to use all databases that were accessible and
included overall survival (OS) data for the patients. At
the time of this study, there was a total of eight AML co-
horts containing gene expression data and correspond-
ing clinical information. Seven of the cohorts were from
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/): GSE10358, GSE66525,
GSE8970, GSE12417, GSE37642, GSE6891, and
GSE71014. There were 1799 AML samples, of which
1229 samples had OS records. The Affymetrix micro-
array data sets of GSE10358, GSE12417, GSE37642, and
GSE6891 were downloaded as CEL files and normalized
by multi-chip averaging (R package affy, V1.60.0). The
data of GSE71014, GSE66525, and GSE8970 were down-
loaded in the form of a normalized expression matrix.
The eighth database came from the Cancer Genome
Atlas (TCGA) database, which contained 173 AML pa-
tients with gene expression and prognosis data. Among
these datasets, GSE12417 was only composed of cytoge-
netically normal (CN-) AML patients. The removed
Batch Effect function of the R language limma package
was used to remove batch effects [18], the expression
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matrices of the 7 GEO databases were merged, and then
quantile normalization was performed through R pack-
age preprocessCore for model construction [19].

Clustering of tumor immune microenvironment cells
The XCell tool (https://xcell.ucsf.edu) was used to
analyze the expression matrix to infer the cellular com-
ponents in the immune microenvironment of 1799 AML
samples in the GEO datasets [20]. According to the me-
dian of each cell infiltration score, patients were divided
into high and low groups, and the survival differences
between the two groups were compared to evaluate the
prognostic value of various cell infiltrations.

Establishment of TIME classification
According to the infiltration scores of all cells with prog-
nostic significance, all samples were hierarchically clus-
tered based on Euclidean distance and Ward linkage to
construct tumor immune microenvironment (TIME)
classification.

Construction and validation of AML prognostic model
The differential expression genes (DEGs) were analyzed
by DEGseq. Those genes were considered as DEG by

using thresholds for both the (adjusted) p-value and a
fold-change (adj.P.Val < 0.05, FC > 1.5) [21]. Log-rank
test and univariate COX regression analysis were used to
screen differentially expressed genes with prognostic sig-
nificance. DAVID was used (https://david.ncifcrf.gov/)
for GO enrichment analysis, and the R software package
was used for “GOPLOT” visualization [22]. Then the
Cox-PH method based on Lasso was applied to establish
the AML prognosis model. The risk index score of each
patient was calculated, which was the sum of the expres-
sion of all genes in the model multiplied by their corre-
sponding weighting coefficients. The median of the risk
index scores in each group was identified as the cutoff
value. Time-dependent receiver operating characteristic
(ROC) curve analysis and Kaplan-Meier survival analysis
were used to evaluate the predictive effect of risk index
scores on the prognosis of AML patients (R package,
survival ROC, v1.0.3).
To validate the predictive efficiency of the model, we

firstly selected three GEO databases with a large number
of patients: GSE10358, GSE37642, and GSE6891 for in-
ternal validation, and TCGA database for external valid-
ation; secondly, we chose GSE12417 to test the
efficiency of our prognosis model in cytogenically

Table 1 Summary of patient clinical information from 7 GEO databases

Overall GSE10358 GSE12417 GSE37642 GSE66525 GSE6891 GSE71014 GSE8970

n 1799 300 242 562 22 536 104 33

Platform (%)

GPL10558 104 (5.8) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 104 (100.0) 0 (0.0)

GPL11532 22 (1.2) 0 (0.0) 0 (0.0) 0 (0.0) 22 (100.0) 0 (0.0) 0 (0.0) 0 (0.0)

GPL570 1055 (58.6) 300 (100.0) 79 (32.6) 140 (24.9) 0 (0.0) 536 (100.0) 0 (0.0) 0 (0.0)

GPL96 618 (34.4) 0 (0.0) 163 (67.4) 422 (75.1) 0 (0.0) 0 (0.0) 0 (0.0) 33 (100.0)

Age group, year/n (%)

< 60 931 (66.0) 53 (58.2) 119 (49.2) 297 (52.8) 14 (63.6) 448 (97.4) 0 (0.0) 0 (0.0)

≥ 60 479 (34.0) 38 (41.8) 123 (50.8) 265 (47.2) 8 (36.4) 12 (2.6) 0 (0.0) 33 (100.0)

WBC group, × 109 L−1/n (%)

< 10 567 (80.1) 4 (4.4) 0 (0.0) 562 (100.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.0)

≥ 10 141 (19.9) 87 (95.6) 0 (0.0) 0 (0.0) 22 (100.0) 0 (0.0) 0 (0.0) 32 (97.0)

PB blasts/n (%)

< 40 50 (44.2) 48 (52.7) 0 (0.0) 0 (0.0) 2 (9.1) 0 (0.0) 0 (0.0) 0 (0.0)

≥ 40 63 (55.8) 43 (47.3) 0 (0.0) 0 (0.0) 20 (90.9) 0 (0.0) 0 (0.0) 0 (0.0)

BM blasts/n (%)

< 50 1638 (97.9) 265 (88.3) 242 (100.0) 562 (100.0) 0 (0.0) 536 (100.0) 0 (0.0) 33 (100.0)

≥ 50 35 (2.1) 35 (11.7) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

OS status/n (%)

Alive 449 (25.1) 46 (15.3) 92 (38.0) 147 (26.6) 0 (0.0) 128 (23.9) 36 (34.6) 0 (0.0)

Dead 884 (49.4) 45 (15.0) 150 (62.0) 406 (73.4) 0 (0.0) 215 (40.1) 68 (65.4) 0 (0.0)

NA 457 (25.5) 209 (69.7) 0 (0.0) 0 (0.0) 22 (100.0) 193 (36.0) 0 (0.0) 33 (100.0)

Abbreviations: WBC, white blood cell; BM, bone marrow; PB, peripheral blood; OS, overall survival
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Fig. 1 Cellular composition of AML immune microenvironment. A Correlation analysis of 33 different types of immune infiltrating cells. Red
means positive correlation, blue means negative correlation, and blank means no significant correlation. B–K. Immune cells with prognostic
significance in the tumor microenvironment. HSC, hematopoietic stem cells

Fig. 2 Establishment of the TIME classification of AML patients. A According to the information of 10 types of immune cells that had an impact
on the prognosis, 1799 AML patients were clustered into three different groups, n (Cluster 1) = 203, n (Cluster 2) = 1172, and n (Cluster 3) = 424.
B There were significant differences in the survival time of AML patients in three groups (P < 0.001). C There are significant differences in immune
score of AML patients in three groups (P < 0.001). D There are significant differences in microenvironment score of AML patients in three groups
(P < 0.001). E There are significant differences in stroma score among AML patients in three groups (P < 0.001). TIME, the tumor
immune microenvironment
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normal AML (CN-AML) patients. At the same time, the
GSE6891 and TCGA databases were selected to assess
the prediction effects of the model in three different
groups of AML patients, including good-risk,
intermediate-risk (IR-), and poor-risk AML patients. All
patients in the database were scored using the model,
and the median score was used to divide the patients
into high and low groups. Kaplan-Meier survival analysis
was used to draw survival curves. The ELN system,
LSC17, Wang and Yang models were collected, and the
time/survival ROC curve and the concordance index (C-
index) analysis were used to evaluate the prognostic
performance.

Statistical analyses
R version 3.6.3 was used for statistical analysis and map-
ping of data. The qualitative data was expressed by the

number of cases and percentages. The Kaplan-Meier
method log-rank test was used for survival analysis. P <
0.05 was considered as statistically significant.

Results
Clustering of immune cells in AML
The clinical information of AML patients from 7 GEO
databases was shown in Table 1. Data information
mainly came from 4 platforms, GPL10558 (n=104),
GPL10532 (n=22), GPL570 (n=1055), and GPL96 (n=
618). A total of 1799 patients were enrolled, of which
1299 patients had OS information. There were 479 pa-
tients in the group older than 60 years and 931 patients
younger than 60 years. Regarding survival status, there
were 449 patients alive, 884 patients died, and 457 pa-
tients with missing data.

Fig. 3 Construction of a prognostic model based on the TIME classification. A Volcano map to explore the differentially expressed genes
between Cluster 1 and Cluster 3 groups. There were 489 highly expressed genes in Cluster 1 (red), and 588 highly expressed genes in Cluster 3
(blue). B Analysis of differentially expressed genes related to prognosis. The large circle represented 3326 genes that had an impact on the
prognosis of AML, the small circle represented 1077 genes that were differentially expressed in Cluster 1 and Cluster 3, and the middle cross was
366 differentially expressed genes related to the prognosis. C Using 366 differentially expressed genes for GO annotation, it was found that
differentially expressed genes were mainly enriched in the following pathways: leukocyte migration, regulation of immune system process,
regulation of immune response, defense response, inflammatory response, translational initiation, nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay, negative regulation of gene expression, protein C-terminus binding, and cytosolic small ribosomal subunit. D Lasso
regression analysis was used to construct a prognostic model containing 121 genes. TIME, the tumor immune microenvironment
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To analyze the TIME of AML, we normalized the ob-
tained GEO data after removing the batch effect and
used the XCell tool to simulate and infer it by silico ana-
lysis. We found that there were 33 cell components in
the AML immune microenvironment. Correlation
matrix analysis showed that there were mainly B cell
groups, T cell groups, and other cell groups (Fig. 1A). In
order to evaluate the prognostic value of the infiltration
level of these cells, all patients were divided into a high
infiltration group and a low infiltration group according
to the median cell infiltration score of each type, and the
survival differences between the two groups were com-
pared. The results of survival analysis showed that the
high infiltration group of CD4+/CD8+ T cells, B cells,
CD8+ central memory T cells, Class-switch memory B
cells, eosinophils, fibroblasts, mast cells, and NKT cells
were all conducive to survival (Fig. 1B–J; all P < 0.05); on
the contrary, the group with high hematopoietic stem
cell (HSC) infiltration had inferior OS (Fig. 1K; P <
0.0001).

Establishment of AML immune microenvironment
classification
Based on the obtained AML immune microenvironmen-
tal cell information, we used infiltration levels of 10
types of cells with prognostic significance for hierarchic-
ally clustered AML patients to establish a TIME

classification. All the patients were divided into three
groups based on the TIME classification. There was a
significant difference in survival between the three
groups. Cluster 1 had the shortest survival time and
Cluster 3 had the longest survival time (Fig. 2A, B). The
score characteristics showed that Cluster 1 had the low-
est immune score and microenvironment score, and the
stroma score of Cluster 1 was the highest; Cluster 3 had
the highest immune score and microenvironment score,
and the stroma score of Cluster 3 was the lowest; the
scores of the Cluster 2 were in the median (Fig. 2C–E).

Construction of AML prognostic model based on TIME
classification
To establish a prognostic model, we analyzed the DEGs
in Cluster 1 and Cluster 3 which demonstrated the lar-
gest differences. Compared with Cluster 3, Cluster 1 had
489 upregulated genes and 588 downregulated genes.
Among these 1077 DEGs, 366 genes had prognostic sig-
nificance (Fig. 3A, B). GO analysis showed that these
366 genes were mainly involved in the regulation of the
immune system, immune response, defense response,
leukocyte migration, inflammatory response, and so on
(Fig. 3C). LASSO-Cox was used to identify the genes
which were most relevant to prognosis among the 366
DEGs with prognostic significance. The coefficient of
each gene was calculated and a proportional hazard

Fig. 4 Validation of the prognostic model. A According to the median score of the prognostic model, patients were divided into high score
group and low score group (Cutoff = 0.0097). B The scatter plot showed that more patients survived in the low score group (red represents
death, blue represents survival). C Among all AML patients with OS data, AML patients in the high group had worse prognostic survival than
those in the low group (n = 1229, P < 0.001). D The 1-, 2-, 3-, and 5-year AUC of AML patients obtained by the prognostic model were 0.77, 0.79,
0.81, and 0.77, respectively. E In GSE37642, the prognostic survival of AML patients in the higher group was shorter (n = 553, P < 0.001). F In
GSE10358, AML patients with high score had a worse prognosis than patients with low score (n = 91, P < 0.001). G In GSE12417, which was all
CN-AML, patients in the high group had worse prognostic survival than those in the low group (n = 242, P < 0.001). OS, overall survival; CN-AML,
cytogenetically normal AML; AUC, area under the curve
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model containing 121 genes was established (Fig. 3D,
Additional file 1: Table S1).

Validation of AML prognostic model
After establishing the prognostic model, we verified the
model with diversity AML cohorts. For 1229 AML pa-
tients, the calculated cutoff value was 0.0097, which
equally divided the patients into the high and low groups
(Fig. 4A). The higher the score, the shorter the patients’
survival time and the higher proportion of deaths (Fig.
4B). Subsequently, we used Kaplan-Meier survival ana-
lysis to compare the prognosis of two groups. Compared
with the low score group, the survival status of the
high score group was worse (Fig. 4C, P < 0.001). The
clinical characteristics of patients in the two groups
showed that the high score group had more old patients
(age ≥ 60), fewer good- and intermediate-risk patients,
and more poor-risk patients (Table 2, all P < 0.001). And
the area under the curve (AUC) of 1, 2, 3, and 5 years

were 0.77, 0.79, 0.81, and 0.77, respectively (Fig. 4D), in-
dicating that our scoring model had high accuracy.
After analyzing the prediction efficiency across all the

patients, we used independent GEO databases for valid-
ation. After processing the data in GSE34642 and
GSE10358 with the same method, there was a significant
difference in prognosis between the high score group
and the low score group, and the high score was a poor
prognostic factor (Fig. 4E, F). In a cohort with the same
subtype of AML patients, such as GSE12417, which was
all comprised of CN-AML patients, the model success-
fully divided the patients into high and low score groups
with significant prognosis differences. The survival time
of patients in the high score group was shorter, which
was consistent with the results of other databases (Fig.
4G).
Moreover, GSE6891 and the TCGA database were se-

lected to test the model’s predictive performance in a
different stratification. Our model performed well in
these two databases, which divided patients into two
groups with significant differences in prognosis, and the
OS of patients in the high score group was shorter (Fig.
5A, B; both P < 0.001). Similar results were also found in
the intermediate risk AML (IR-AML) patients in two co-
horts (Fig. 5C, D; both P < 0.001). For patients in the
good-risk group, there was no significant difference in
both cohorts (Additional file 1: Fig. S1A, B). Finally, the
model divided the poor-risk patients of GSE6891 into
two groups with different prognoses, and the group with
higher scores had inferior OS (Additional file 1: Fig.
S1C, P=0.0094). However, the same result was not found
in the TCGA database, most likely due to the small
number of poor-risk patients (Additional file 1: Fig.
S1D).
In recent years, some new AML prognostic models

have been proposed. We selected the latest three models
to compare their prediction effects with our model:
Wang’s model, LSC-17, and Yang’s model [5–7]. Wang
et al. established a model based on the gene expression
profiling (RNA sequencing), which demonstrated the
best predictive performance compared with previous
studies. Therefore, we also compared the models pub-
lished after Wang. LSC-17 was established on the basis
of AML hematopoietic stem cells, and Yang et al. con-
structed a model using the gene expression profiling. In
addition, we also compared our model with the classic
ELN risk stratification system. Multivariate survival ana-
lysis found that in the GSE6891 and the TCGA database,
our 121-gene prognostic model was the only independ-
ent prognostic factor for AML patients (Table 3; both P
< 0.05). In GSE6891 and the TCGA database, our prog-
nostic model demonstrated the largest AUC of the sur-
vival ROC curve and highest C-Index among the five
prognostic models, indicating that our prognostic model

Table 2 Comparison of 1229 patients’ clinical characteristics in
two groups

Characteristics Total High (n=614) Low (n=615) P

Age group/n (%) < 0.001§

< 60 years 750 (61.0) 308 (50.2) 442 (71.9)

≥ 60 years 428 (34.8) 276 (44.9) 152 (24.7)

NA 51 (4.2) 30 (4.9) 21 (3.4)

WBC/n (%) 0.798§

< 10 % 29 (2.4) 12 (2.0) 17 (2.8)

≥ 10 % 62 (5.0) 29 (4.7) 33 (5.3)

NA 1138 (92.6) 573 (93.3) 565 (91.9)

PB blasts/n (%) 0.635§

< 40 % 48 (3.9) 20 (3.3) 28 (4.5)

≥40 % 43 (3.5) 21 (3.4) 22 (3.6)

NA 1138 (92.6) 573 (93.3) 565 (91.9)

BM blasts /n (%) 0.462§

< 50 % 18 (1.5) 10 (1.6) 8 (1.3)

≥ 50 % 73 (5.9) 31 (5.1) 42 (6.8)

NA 1138 (92.6) 573 (93.3) 565 (91.9)

Risk/n (%) < 0.001§

Good 55 (4.5) 9 (1.5) 46 (7.5)

Intermediate 175 (14.2) 67 (10.9) 108 (17.6)

Poor 53 (4.3) 32 (5.2) 21 (3.4)

NA 946 (77.0) 506 (82.4) 440 (71.5)

OS/n (%) < 0.001§

Alive 413 (33.6) 78 (12.7) 335 (54.5)

Dead 816 (66.4) 536 (87.3) 280 (45.5)

Abbreviations: WBC, white blood cell; BM, bone marrow; PB, peripheral blood;
NA, not applicable
§Chi-square test
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was more reliable (Fig. 5E–H). At the same time, we also
calculated the AUC of the time ROC curve and statisti-
cally analyzed the results of the four models. The final
results showed that in GSE6891, our model had the
highest AUC. The comparison of AUC between our
model and LSC17 displayed the significant differences at
all times (Additional file 1: Fig. S2A, all P < 0.05). Com-
paring our model with the Wang and Yang models,
there were significant differences in AUC from the
600th day (Additional file 1: Fig. S2A, all P < 0.05). In
the TCGA database, although our model demonstrated
the largest AUC from the 500th day, there was only a
statistical difference between our model and LSC17 on
the 1000th day (Additional file 1: Fig. S2B, P=0.042).
The possible reason for this result was the small number
of patients in the TCGA database.

Discussion
In this study, we used 7 AML GEO databases to infer
the cellular composition of the immune microenviron-
ment and construct the TIME classification based on in-
filtration characteristics of 10 types of immune cells. In
TIME classification, patients were divided into three
groups with significant differences in survival. Cluster 1

had the worst prognosis, and Cluster 3 had the best
prognosis. The scoring characteristics of the three
groups showed that the status of immunity and the
number of HSCs had opposite prognostic effects on
AML patients. The patients with the stronger immune
function had the better prognosis, while the patients
with a greater number of HSCs demonstrated the worse
prognosis. The reasons for this were also well understood.
The patients with more powerful immunity have stronger
abilities to kill AML tumor cells, which tend to have the
longer survival time. The HSCs in this study included nor-
mal HSCs and LSCs. LSCs mainly exist in patients and
can drive disease recurrence [23]. High infiltration of
HSCs in TIME was a poor prognostic factor. In addition
to evaluating the prognosis, the TIME classification could
also be used to construct a prognostic scoring model.
Our prognostic scoring model was validated internally

and externally in multiple databases and showed excel-
lent prognostic performance. Multivariate analysis
showed that our model was the only independent risk
factor compared with other models. At the same time,
our model displayed the largest AUC and highest C-
index. Collectively, our model had better prediction ac-
curacy. Multi-time points AUC in our model

Fig. 5 The comparison of the prognostic model with the ELN system and other models. A, B In GSE6891 (n=291) and the TCGA database (n=
173), AML patients in the high-score group had worse prognostic survival than those in the low-score group (both P < 0.001). C, D The model
divided the IR-AML patients into two groups with significant differences in survival (both P < 0.001) in GSE6891 (n=175) and the TCGA database
(n = 92). In GSE6891 and the TCGA database, E, F compared with LSC17, Yang, Wang’ models, and ELN system, the 121-gene prognostic model
had the highest AUC value of survival ROC. G, H The 121-gene prognostic model had a higher C-Index value than the LSC17, Yang, Wang’
models, and the ELN system. IR-AML, intermediate-risk AML; AUC, area under the curve; ROC, receiver operating characteristic; C-index,
concordance index
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were significantly higher than other models in GSE6891
cohorts; however, in the TCGA cohort, only 1000th day
AUC of our model showed significantly higher than
other models. This may be due to the small number and
the high heterogeneity in clinical characteristics of pa-
tients in the TCGA cohort.
The prognostic prediction of AML has always been a

relatively complex issue. Our model cannot further strat-
ify good-risk AML patients which may be due to the
relatively small number of patients. In the poor-risk pa-
tient group, there were similar survival curves in the two
databases. Owing to the insufficient number of patients,
there was no statistical difference in the TCGA database.
Because high-risk patients were easily identified and their
treatment strategies were mature, we mainly focused on
the IR-AML patient group. The current ELN risk stratifi-
cation system sometimes misclassified the IR-AML pa-
tients. Moreover, the intermediate-risk group is the largest
subgroup with marked clinical heterogeneity. Our AML
prognostic model based on TIME classification success-
fully reclassified the IR-AML patients in the GSE6891 and
the TCGA database, enabling the more accurate treatment
for these patients. In addition, our model can also distin-
guish the poor prognosis group from CN-AML patients

without cytogenetic abnormalities, providing new possibil-
ities for personalized treatment.
In conclusion, we used 7 AML cohorts with a large sam-

ple size to build a prognostic model. AML patients in dif-
ferent ages and patients with different cytogenetic
abnormalities were enrolled in our study. The predictive
effect of the model has been successfully validated in mul-
tiple databases, indicating that the model had an excellent
prognostic performance. However, the prognostic model
had some limitations. For example, it was derived from
the retrospective research and was still not clinically ap-
plicable at present. In the future, these shortcomings may
be overcome through prospective experiments and the in-
vention of novel multiplex Polymerase Chain Reaction
kits. The prognostic model may also have other effects on
clinical implementations, such as using these genes to find
potential therapeutic targets and drugs, which may pro-
vide new ideas for the diagnosis and treatment of AML.

Conclusion
We aggregated multiple database information to estab-
lish the TIME classification of AML patients. A new
prognostic model was constructed based on classifica-
tion, and the predictive effect of the model had been

Table 3 Multivariable overall survival analysis in the TCGA cohort and GSE6891

Variable TCGA GSE6891

Coef HR (95%CI) P Coef HR (95%CI) P

121-Gene-Signatures 0.390 1.477 (1.004–2.172) 0.048 1.252 3.499 (2.043–5.992) < 0.001

LSC17 − 0.989 0.372 (0.035–3.913) 0.410 − 0.009 0.991 (0.702–1.398) 0.959

Yang 0.955 2.599 (0.150–45.074) 0.512 − 0.777 0.460 (0.069–3.046) 0.421

Wang 0.322 1.381 (0.588–3.244) 0.459 0.146 1.157 (0.625–2.145) 0.642

ELN risk stratification

Good NA NA NA − 0.317 0.729 (0.298–1.779) 0.487

Intermediate 0.677 1.969 (0.822–4.714) 0.128 − 0.420 0.657 (0.310–1.395) 0.274

Poor 0.742 2.099 (0.786–5.606) 0.139 − 0.616 0.540 (0.244–1.194) 0.128

Age (≥ 60 vs. < 60 years) 0.505 1.657 (0.981–2.799) 0.059 0.013 1.013 (0.999–1.027) 0.063

WBC (≥10 × 109 vs. < 10 × 109/L) 0.254 1.289 (0.764–2.175) 0.341 NA NA NA

BM blasts (≥ 50 vs. < 50%) 0.631 1.879 (0.853–4.140) 0.118 NA NA NA

PB blasts (≥ 40 vs. < 40%) 0.108 1.114 (0.633–1.962) 0.708 NA NA NA

FLT3_ITD (positive vs. negative) 0.003 1.003 (0.404–2.491) 0.994 − 0.220 0.803 (0.536–1.203) 0.287

NPM1 (mutated vs. wild) − 0.242 0.785 (0.389–1.586) 0.500 0.478 1.613 (1.057–2.461) 0.027

DNMT3A (mutated vs. wild) 0.296 1.345 (0.788–2.295) 0.277 NA NA NA

RUNX1 (mutated vs. wild) − 0.302 0.739 (0.307–1.783) 0.501 NA NA NA

CEBPA (mutated vs. wild) NA NA NA 0.137 1.147 (0.448–2.936) 0.776

IDH1 (mutated vs. wild) NA NA NA − 0.389 0.678 (0.389–1.180) 0.169

IDH2 (mutated vs. wild) NA NA NA 0.384 1.468 (0.817–2.637) 0.199

NRAS (mutated vs. wild) NA NA NA 0.035 1.036 (0.596–1.801) 0.901

KRAS (mutated vs. wild) NA NA NA − 0.526 0.591 (0.179–1.955) 0.389

Abbreviations: WBC, white blood cell; BM, bone marrow; PB, peripheral blood
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validated in different AML databases. It can further
group CN-AML and IR-AML, and its predictive effi-
ciency was better than the ELN system and other pub-
lished new models. This model provided a new method
for predicting the prognosis of AML patients and discov-
ered new ways for clinical diagnosis and treatment.
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