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key genes regulated by parathyroid
hormone receptor 1 in osteosarcoma
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Abstract

Background: As an invasive malignant tumor, osteosarcoma (OS) has high mortality. Parathyroid hormone receptor
1 (PTHR1) contributes to maintaining proliferation and undifferentiated state of OS. This study is designed to reveal
the action mechanisms of PTHR1 in OS.

Methods: Microarray dataset GSE46861, which included six PTHR1 knockdown OS samples and six control OS
samples, was obtained from the Gene Expression Omnibus database. The differentially expressed genes (DEGs)
were identified and then performed with enrichment analysis separately using the limma package and DAVID
online tool. Then, protein-protein interaction (PPI) network and module analyses were conducted using
Cytoscape software. Using the WebGestalt tool, microRNAs (miRNAs) were predicted for the DEGs involved in
the PPI network. Following this, transcription factors (TFs) were predicted and an integrated network was
constructed by Cytoscape software.

Results: There were 871 DEGs in the PTHR1 knockdown OS samples compared with the control OS samples.
Besides, upregulated ZFPM2 was involved in the miRNA-DEG regulatory network. Moreover, TF LEF1 was
predicted for the miRNA-DEG regulatory network of the downregulated genes. In addition, LEF1, NR4A2, HAS2,
and RHOC had higher degrees in the integrated network.

Conclusions: ZFPM2, LEF1, NR4A2, HAS2, and RHOC might be potential targets of PTHR1 in OS.

Keywords: Osteosarcoma, Parathyroid hormone receptor 1, Differentially expressed genes, Protein-protein
interaction network, Integrated network

Background
As an invasive malignant tumor, osteosarcoma (OS)
often occurs in tubular long bones [1]. OS is the
most common type of primary bone cancer, which
has high occurrence rate in children and teenagers
[2]. OS has rapid growth, high metastatic potential,
and local aggressiveness; thus, it can result in high
mortality [3]. In childhood cancers, OS accounts for
about 2.4% of all malignant cancers and is the eighth
most common tumor [4]. Therefore, revealing the
molecular mechanisms of OS and developing novel
therapies are of great importance.

Via upregulating matrix metalloproteinase 2
(MMP2), astrocyte elevated gene 1 (AEG1) functions
in OS progression can be used for predicting the
progression and prognosis of the disease [5, 6]. A
previous study reports that miR-203 is a tumor
suppressor by mediating RAB22A, member RAS
oncogene family (RAB22A) expression, and has correl-
ation with the progression and carcinogenesis of OS
[7]. Through nuclear factor kappa B (NF-κB) signaling
pathway and mitochondria pathway, the inhibitor of
growth 4 (ING4) plays a suppressive role in OS
progression and serves as a potential target for treat-
ing OS [8, 9]. miR-24 inhibits the metastasis of OS
via regulating activated Cdc42-associated kinase
(ACK1) through AKT/MMP pathways, which may be
applied for the diagnosis and therapy of OS [10].
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However, the pathogenesis of OS has not been com-
prehensively revealed.
Parathyroid hormone receptor 1 (PTHR1) signaling plays

a critical role in keeping proliferation and undifferentiated
state of OS; thus, PTHR1 suppression may be used to in-
hibit OS proliferation and promote differentiation [11, 12].
Overexpression of PTHR1 may contribute to OS progres-
sion through affecting aggressive phenotype and micro-
environment [13]. To explore the action mechanisms of
PTHR1 in OS, we downloaded the microarray dataset
GSE46861 which included both PTHR1 knockdown OS
samples and control OS samples. Then, differentially
expressed genes (DEGs) were identified and performed
with enrichment analysis. In addition, protein-protein inter-
action (PPI) network and module analyses, as well as inte-
grated network analysis, were conducted to further screen
the key targets of PTHR1 in OS.

Methods
Data source and data preprocessing
Microarray dataset GSE46861, which was sequenced on
the platform of GPL6246 [MoGene-1_0-st] Affymetrix
Mouse Gene 1.0 ST Array [transcript (gene) version],
was obtained from the Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/) database. GSE46861

included six PTHR1 knockdown OS samples and six
control OS samples. The raw data of GSE46861 was nor-
malized using the Robust Multiarray Average (RMA)
method [14] in the R package Affy (version: 1.52.0).

DEG screening and hierarchical cluster analysis
After the data normalization, the DEGs between PTHR1
knockdown OS samples and control OS samples were
screened using the Linear Models for Microarray
Analysis (limma, version: 3.30.3) [15] package in R. The
|log2 fold change (FC)| > 0.58 and p value < 0.05 were
considered as the thresholds. In addition, pheatmap
package (version 1.0.8, https://cran.r-project.org/web/
packages/pheatmap/index.html) in R was utilized to per-
form the hierarchical cluster analysis.

Functional and pathway enrichment analysis
Gene Ontology (GO) database can annotate genes and
gene products from molecular function (MF), biological
process (BP), and cellular component (CCo) aspects [16].
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
database can be applied for revealing gene functions and
connecting genomic information with functional
information [17]. Using the Database for Annotation,
Visualization and Integrated Discovery (DAVID, version:

Fig. 1 The heatmap of the differentially expressed genes by using pheatmap package
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6.8, parameter: Classification Stringency was set as
Medium) online tool [18], GO functional and KEGG
pathway enrichment analyses were carried out for the
DEGs, with the threshold of p value < 0.05.

PPI network and module analyses
Search Tool for the Retrieval of Interacting Genes
(STRING, version: 10.0) database [19], which included
PPI pairs of multiple organisms, was used to analyze the
PPI pairs among the DEGs. The required confidence
(combined score) > 0.4 was used as the cutoff criterion.
Afterwards, PPI network was visualized using Cytoscape
software [20]. Based on the CytoNCA plugin (version
2.1.6, parameter: without weight) [21] in Cytoscape soft-
ware, topological property analysis was performed for
the nodes in the PPI network. According to closeness
centrality (CCe), betweenness centrality (BC), and degree
centrality (DC) scores, the hub nodes [22] in the PPI
network were selected. Moreover, the MCODE plugin
(version 1.2) [23] in Cytoscape software was used for
identifying the significant modules in the PPI network.
In addition, enrichment analysis for the genes involved

in the most significant module was conducted using the
DAVID online tool [18].

Integrated network analysis
Using WEB-based gene set analysis toolkit (WebGestalt)
tool [24], miRNAs were predicted for the DEGs involved
in the PPI network, with false discovery rate (FDR, that
was adjusted p value) < 0.05 and number of target genes
≥ 5 as the thresholds. Based on the iRegulon plugin (ver-
sion 1.3) [25] in Cytoscape software, transcription fac-
tors (TFs) were further predicted for the miRNA-DEG
regulatory network. The Minimum NEScore > 3 and
FDR on motif similarity < 0.001 were set as thresholds.
Finally, the obtained transcription regulation relation-
ships were merged into the miRNA-DEG regulatory net-
work, and the integrated network was visualized by
Cytoscape software [20].

Results
DEG analysis and hierarchical cluster analysis
Compared with the control OS samples, there were a
total of 871 DEGs (438 upregulated and 433

Fig. 2 The top five GO_BP terms and pathways for the upregulated genes (a) and the downregulated genes (b), respectively, analyzed by Database for
Annotation, Visualization and Integrated Discovery online tool. GO, Gene Ontology; BP, biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes
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downregulated genes) in the PTHR1 knockdown OS
samples. The heatmap of the DEGs is shown in Fig. 1,
which indicated that the expression of identified
DEGs could correctly distinguish the two kinds of
samples.

Functional and pathway enrichment analysis
Enrichment analysis was conducted for the upregulated
genes and the downregulated genes, respectively. A total
of 121 GO_BP terms and 20 pathways were enriched for
the upregulated genes. The top five GO_BP terms and
pathways are shown in Fig. 2a, mainly including immune
system process (GO_BP, p value = 4.07E−07) and
Staphylococcus aureus infection (pathway, p value = 1.09E
−08). Besides, a total of 65 GO_BP terms and five
pathways were enriched for the downregulated genes.
Similarly, the top five GO_BP terms (such as sterol bio-
synthetic process, p value = 1.02E−06) and pathways (such
as Biosynthesis of antibiotics, p value = 6.96E−05) are
shown in Fig. 2b.

PPI network and module analyses
The PPI network for the upregulated genes had 280
nodes and 1090 interactions. According to DC scores,
the nodes with degrees larger than 30 are listed in
Table 1. The most significant module (score = 25.786)
identified from the PPI network for the upregulated
genes had 29 nodes and 361 interactions (Fig. 3a). The
upregulated genes involved in the most significant mod-
ule were mainly enriched in immune system process
(GO_BP, p value = 1.63E−07) and Staphylococcus aureus
infection (pathway, p value = 2.59E−10) (Table 2 (A)).
Besides, the PPI network constructed for the downreg-

ulated genes included 262 nodes and 503 interactions. In
the PPI network, discs, large homolog 4 (DLG4) was the
only node with degree larger than 20. Module analysis
for the PPI network of the downregulated genes showed
that the most significant module (score = 10.364) had 12
nodes and 57 interactions (Fig. 3b). The downregulated
genes involved in the most significant module were

Table 1 The nodes with degrees larger than 30 in the protein-
protein interaction (PPI) network for the upregulated genes

Gene Degree Betweenness Closeness

Ms4a6d 41.0 888.54470 0.055844676

Ly86 39.0 523.09924 0.055800000

Ms4a6b 39.0 2949.2993 0.055755395

C1qb 38.0 1383.42100 0.055766540

C1qa 38.0 3947.00420 0.056295400

Aif1 37.0 4212.39100 0.056261342

Mpeg1 37.0 323.91983 0.055655297

Fcgr1 37.0 501.60864 0.055633100

Ctss 37.0 640.59326 0.055588763

C1qc 37.0 749.12880 0.055811163

Clec4a3 36.0 475.66116 0.055710863

Gpr65 36.0 998.11590 0.055822328

Igsf6 34.0 173.94502 0.055544496

Fcgr3 34.0 1279.76680 0.055811163

Cd86 33.0 2105.79080 0.055710863

Themis2 33.0 415.82825 0.055577688

Fcgr4 33.0 310.27353 0.055500300

Ms4a6c 33.0 146.86868 0.055566620

Cybb 33.0 5207.74660 0.056695793

Ccl6 32.0 927.98834 0.055721990

Clec4n 31.0 164.47343 0.055555556

Fig. 3 The most significant modules identified from the protein-protein interaction (PPI) networks for the upregulated genes (a) and the downregulated
genes (b). The significant modules were analyzed by using MCODE plugin, and then module networks were visualized using Cytoscape software

Guan and Tian World Journal of Surgical Oncology  (2017) 15:177 Page 4 of 10



Ta
b
le

2
Th
e
G
O
_B
P
te
rm

s
an
d
pa
th
w
ay
s
en

ric
he

d
fo
r
th
e
up

re
gu

la
te
d
ge

ne
s
(A
)
an
d
th
e
do

w
nr
eg

ul
at
ed

ge
ne

s
(B
)
in
vo
lv
ed

in
th
e
m
os
t
si
gn

ifi
ca
nt

m
od

ul
es
.G

O
,G

en
e

O
nt
ol
og

y;
BP
,b

io
lo
gi
ca
lp

ro
ce
ss

C
at
eg

or
y

Te
rm

C
ou

nt
P
va
lu
e

G
en

e
sy
m
bo

l

(A
)

G
O
_B
P

G
O
:0
00
23
76
~
im

m
un

e
sy
st
em

pr
oc
es
s

8
1.
63
E−

07
C1
Q
A,
C1
Q
B,
CD

86
,L
Y8
6,
FC
G
R1
,T
H
EM

IS
2,
C1
Q
C,
CL
EC
4N

G
O
:0
04
55
76
~
m
as
t
ce
ll
ac
tiv
at
io
n

4
3.
83
E−

07
CD

48
,F
YB
,F
CG

R2
B,
FC
G
R3

G
O
:0
04
50
87
~
in
na
te

im
m
un

e
re
sp
on

se
7

4.
62
E−

06
C1
Q
A,
C1
Q
B,
CY

BB
,L
Y8
6,
FC
G
R1
,C
1Q

C,
CL
EC
4N

G
O
:0
00
69
11
~
ph

ag
oc
yt
os
is
,e
ng

ul
fm

en
t

4
1.
86
E−

05
FC
G
R2
B,
AI
F1
,F
CG

R1
,F
CG

R3

G
O
:0
00
69
54
~
in
fla
m
m
at
or
y
re
sp
on

se
5

5.
96
E−

04
CY

BB
,A

IF
1,
LY
86
,T
H
EM

IS
2,
CC

L6

PA
TH

W
A
Y

m
m
u0
51
50
:S
ta
ph

yl
oc
oc
cu
s
au
re
us

in
fe
ct
io
n

7
2.
59
E−

10
C1
Q
A,
C1
Q
B,
FC
G
R2
B,
FC
G
R4
,F
CG

R1
,C
1Q

C,
FC
G
R3

m
m
u0
53
22
:S
ys
te
m
ic
lu
pu

s
er
yt
he

m
at
os
us

6
6.
02
E−

06
C1
Q
A,
C1
Q
B,
CD

86
,F
CG

R4
,F
CG

R1
, C
1Q

C

m
m
u0
41
45
:P
ha
go

so
m
e

6
1.
37
E−

05
CY

BB
,F
CG

R2
B,
FC
G
R4
,C
TS
S,
FC
G
R1
,F
CG

R3

m
m
u0
51
52
:T
ub

er
cu
lo
si
s

6
1.
45
E−

05
FC
G
R2
B,
IL
10
RA

,F
CG

R4
,C
TS
S,
FC
G
R1
,F
CG

R3

m
m
u0
43
80
:O
st
eo

cl
as
t
di
ffe
re
nt
ia
tio

n
5

8.
03
E−

05
CY

BB
,F
CG

R2
B,
FC
G
R4
,F
CG

R1
,F
CG

R3

(B
)

G
O
_B
P

G
O
:0
01
61
25
~
st
er
ol

m
et
ab
ol
ic
pr
oc
es
s

8
4.
60
E−

14
CY

P5
1,
LD

LR
,H

M
G
CR

,F
D
PS
,H

M
G
CS
1,
SR
EB
F2
,S
C4
M
O
L,
D
H
CR

24

G
O
:0
00
82
02
~
st
er
oi
d
m
et
ab
ol
ic
pr
oc
es
s

9
5.
23
E−

14
CY

P5
1,
LD

LR
,H

M
G
CR

,F
D
PS
,H

M
G
CS
1,
LS
S,
SR
EB
F2
,S
C4
M
O
L,
D
H
CR

24

G
O
:0
00
82
03
~
ch
ol
es
te
ro
lm

et
ab
ol
ic
pr
oc
es
s

7
6.
80
E−

12
CY

P5
1,
LD

LR
,H

M
G
CR

,F
D
PS
,H

M
G
CS
1,
SR
EB
F2
,D

H
CR

24

G
O
:0
00
66
94
~
st
er
oi
d
bi
os
yn
th
et
ic
pr
oc
es
s

7
7.
42
E−

12
CY

P5
1,
H
M
G
CR

,F
D
PS
,H

M
G
CS
1,
LS
S,
SC
4M

O
L,
D
H
CR

24

G
O
:0
01
61
26
~
st
er
ol

bi
os
yn
th
et
ic
pr
oc
es
s

6
1.
69
E−

11
CY

P5
1,
H
M
G
CR

,F
D
PS
,H

M
G
CS
1,
SC
4M

O
L,
D
H
CR

24

PA
TH

W
A
Y

m
m
u0
01
00
:S
te
ro
id

bi
os
yn
th
es
is

5
1.
10
E−

08
CY

P5
1,
SQ

LE
,L
SS
,S
C4
M
O
L,
D
H
CR

24

m
m
u0
09
00
:T
er
pe

no
id

ba
ck
bo

ne
bi
os
yn
th
es
is

3
2.
46
E−

04
H
M
G
CR

,F
D
PS
,H

M
G
CS
1

Guan and Tian World Journal of Surgical Oncology  (2017) 15:177 Page 5 of 10



mainly enriched in sterol metabolic process (GO_BP,
p value = 4.60E–14) and steroid biosynthesis (path-
way, p value = 1.10E−08) (Table 2 (B)).

Integrated network analysis
The miRNA-DEG regulatory network constructed for the
upregulated genes (such as zinc finger protein, multitype
2, ZFPM2) and the downregulated genes are separately
shown in Figs. 4 and 5. There was no TF predicted for the
miRNA-DEG regulatory network of the upregulated
genes. Only two TFs (SRY (sex determining region Y)-box
12, SOX12, and lymphoid enhancer binding factor 1,
LEF1) were predicted for the miRNA-DEG regulatory net-
work of the downregulated genes. The integrated network

for the downregulated genes had 278 nodes and 1144
edges (Fig. 6). Especially, LEF1, nuclear receptor subfamily
4 group A member 2 (NR4A2), hyaluronan synthase 2
(HAS2), and ras homolog family member C (RHOC) had
higher degrees in the integrated network.

Discussion
In this study, a total of 871 DEGs were identified in the
PTHR1 knockdown OS samples compared with the con-
trol OS samples, including 438 upregulated and 433
downregulated genes. ZFPM2 was involved in the
miRNA-DEG regulatory network constructed for the up-
regulated genes. There was no TF predicted for the
miRNA-DEG regulatory network of the upregulated

Fig. 4 The miRNA-gene regulatory network for the upregulated genes. The interactions of miRNAs-gene were predicted by WEB-based gene set
analysis toolkit tool, and regulatory network was visualized using Cytoscape software. Red circles and white quadrangles represent upregulated
genes and miRNAs, respectively
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genes. Besides, TF LEF1 was predicted for the miRNA-
DEG regulatory network of the downregulated genes. In
the integrated network, LEF1, NR4A2, HAS2, and RHOC
had higher degrees.
In rat bone marrow stromal cells (BMSCs), neuro-

trophic factors, NURR1 (also named NR4A2), tyrosine
hydroxylase (TH), and nestin genes have spontaneous
expression [26]. NURR1 and NURR77 may contribute to
increase the migratory potential of fetal FBMSCs, which
may mediate the local immune response specifically
[27]. NURR1 and PPARγ coactivator-1α (PGC-1α) may
play pivotal roles in mediating osteoblast function and
cAMP-dependent osteoblast gene expression [28, 29].
NURR1 maintains cartilage homeostasis via selectively
inhibiting the expression of MMP gene during inflam-
mation [30]. These declared that PTHR1 might function
in OS through targeting NR4A2.
Hyaluronan synthesized by HAS2 affects the prolifera-

tion, invasion, and motility of MG-63 OS cells [31].

Through regulating the expressions of versican, HAS2,
and hyaluronan, transforming growth factor β2 (TGF-
β2) may lead to the metastasis of OS cells [32]. HAS2
plays critical roles in osteoblast differentiation and devel-
opment by mediating high molecular weight hyaluronan
synthesis [33]. RHOC and MMP9 expression levels have
close association, and their high expressions are closely
correlated with the formation, development, invasion,
and metastasis of OS [34]. RHOC has different expres-
sions in SOSP-9607E10 and SOSP-9607H9 OS cell lines,
and its overexpression functions in the invasion and me-
tastasis of OS through inducing cell migration [35].
Therefore, HAS2 and RHOC might also be targets of
PTHR1 in OS.
Via regulating the expression of ZFPM2, hypoxia-

induced miR-429 contributes to the differentiation of
osteoblastic cells [36]. LEF1 can delay osteoblast mat-
uration and regulates the expression levels of some
genes in osteoblasts [37]. LEF1 has an essential role

Fig. 5 The miRNA-gene regulatory network for the downregulated genes visualized using Cytoscape software. The interactions of miRNAs-gene
were predicted by WEB-based gene set analysis toolkit tool, and regulatory network was visualized using Cytoscape software. Green circles and
white quadrangles represent downregulated genes and miRNAs, respectively
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in the activation of alpha 1 (XI) collagen (COL11A1),
and COL11A1 inhibits the terminal differentiation of
osteoblasts [38]. LEF1 serves as a transcriptional ef-
fector of the Wnt/β-catenin pathway and is critical
for the tumor invasion induced by hepatocyte growth
factor (HGF) [39]. LEF1 mediates bone density, osteo-
blast differentiation, and skeletal strength, and Lef1ΔN
regulates the terminal differentiation in osseous cells

[40, 41]. Thus, ZFPM2 and LEF1 might be targets of
PTHR1 in OS.

Conclusions
In conclusion, a total of 871 DEGs were screened from
the PTHR1 knockdown OS samples. Besides, ZFPM2,
LEF1, NR4A2, HAS2, and RHOC might be targets of
PTHR1 in OS. However, more experimental researches

Fig. 6 The integrated network for the downregulated genes visualized by Cytoscape software. The miRNA-gene regulatory relationships in the network were
predicted by using WEB-based gene set analysis toolkit tool, whereas transcription factor-genes regulatory relationships in the network were predicted by
using iRegulon plugin. Green circles, white quadrangles, and white triangles represent downregulated genes, miRNAs, and transcription factors, respectively
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should be conducted to confirm these findings obtained
from bioinformatics analysis.
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